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discuss the renormalization of S, as well as the implications for bounds from electroweak

precision measurements on these models. We argue that, although in principle the choice

of renormalization condition could eliminate the S parameter constraint, a more consistent

condition would still result in a large and positive S. On the other hand, we show that

the dependence on the Higgs mass in S can be entirely eliminated by the renormalization

procedure, making it impossible in these theories to extract a Higgs mass bound from

electroweak precision constraints.
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1. Introduction

Although the standard model (SM) is an extremely successful description of the electroweak

interactions, the instability of the weak scale under radiative corrections leads us to believe

that there should be physics beyond the SM at an energy scale not far beyond the TeV.

The origin of electroweak symmetry breaking (EWSB) as well as of fermion masses, might

be associated with this new dynamics. A proposal for stabilizing the weak scale using a

theory with one compact extra dimension with a non-factorizable, Anti de Sitter metric [1],

the Randall-Sundrum (RS) model, can be thought of as dual to a strongly coupled four-

dimensional theory with a large number of colors [2]. The slice of AdS5 is defined by an

ultra-violet (UV) fixed point located at the Planck scale, MP , and an infra-red (IR) one,

with an exponentially suppressed scale which is identified as the TeV scale. The 5D metric

in conformal coordinates is given by:

ds2 =

(

1

kz

)2

(ηµνdxµdxν − dz2) (1.1)

where k is the AdS5 curvature. This spacetime has two 4D boundaries at z0 = 1/k ∼ 1/MP l

and z1 ∼ 1/TeV, respectively the UV and IR boundaries.

In order to stabilize the weak scale, the Higgs field must be localized at or near the

TeV brane. This is not the case with the rest of the fields, which can then propagate in

the AdS5 bulk. The theories built this way, bulk AdS5 models, not only avoid potentially

troublesome higher dimensional operators suppressed only by the TeV scale, but also allow

for a natural explanation of the fermion mass hierarchy [3 – 5].
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There are several possibilities for building models of electroweak symmetry breaking

in AdS5. The basic elements for building a successful theory include the choice of the

bulk gauge group, the zero-mode fermion localization and the dynamical mechanism for

localizing the Higgs field on or near the TeV brane. The bulk gauge symmetry must be

enlarged with respect to the SM in order to include isospin symmetry and avoid tree level

contributions to the T parameter. A minimal extension [6] is SU(2)L × SU(2)R × U(1)X ,

broken by boundary conditions either to the SM gauge group SU(2)L×U(1)Y or directly to

U(1)EM as in Higgsless models [7]. In order to naturally address the fermion mass hierarchy,

light fermions must be localized close to the UV boundary, and heavier fermions, such as the

top quark, must be localized towards the IR brane to have a significant Yukawa coupling to

the Higgs field [3, 4]. Finally, the IR localization of the Higgs can be dynamically achieved

in specific models of EWSB. For instance, in a Gauge-Higgs unification model [8, 9] in

AdS5, the Higgs arises from the A5 components of a gauge field and is naturally localized

towards the TeV brane, as required to solve the hierarchy problem; whereas the inclusion

of a fourth-generation highly localized towards the IR brane can result in a condensation

of some of the fourth-generation zero modes and therefore in a Higgs localized near the

IR [10]. IR localization of the Higgs can even be achieved in soft-wall models without an

IR brane, as it is shown in ref. [11] in a Gauge-Higgs unification model.

These bulk AdS5 models of EWSB and fermion masses can be thought of as duals of

some strongly coupled 4D theory. They all share a common problem regarding electroweak

precision constraints: a tree-level S parameter. This is approximately given by [6, 12]

Stree ≃ 2π v2 z2
1 , (1.2)

where v ≃ 246 GeV is the vacuum expectation value of the Higgs field and we took the limit

vz1 ≪ 1.1 For a TeV scale IR brane this results in Stree ≃ 0.3, in contradiction with current

electroweak constraints [13]. It is possible to avoid this problem by de-localizing fermions

[6, 14]. But in doing so, we would loose one of the most interesting features of these

theories, namely a natural way of generating the fermion mass hierarchy. In this paper, we

will restrict ourselves to models with light fermions localized near the UV boundary.

The presence of the tree-level S parameter in all bulk AdS5 models poses a very

stringent constraint on them. It suggests that it would be of interest to study the loop

contributions to it. In this paper we compute the one loop contributions to the S parameter

in these models coming from loops involving the Higgs sector. We will show that the

one loop contributions to S are logarithmically divergent and therefore require that S be

properly renormalized. We argue that similar divergences are expected in the fermion and

gauge boson loops. The fact that S is logarithmically sensitive to the cutoff should not be

completely surprising. From the point of view of the 5D theory, this is the cutoff of the non-

renormalizable theory, properly warped down. On the other hand, in the 4D holographic

picture, this cutoff corresponds to the matching of the low energy effective theory and

the 4D strongly coupled CFT. A more subtle question is the choice of a renormalization

1In Gauge-Higgs unification models there is typically an additional suppression given by (v/fπ)2, the

ratio of the Higgs VEV to the symmetry breaking scale [9].
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condition for S. Although the logarithmic divergence is sub-dominant in the large N

expansion, it could be numerically sizable. Furthermore, the renormalization procedure

introduces a scale dependence in the S parameter. All in all, the use of the S parameter

as a tight constraint on the mass scale of the Kaluza-Klein (KK) excitations as well as on

the Higgs mass must be reassessed.

The plan for the rest of the paper is as follows: in the next section we present the setup

of AdS5 bulk models and derive the low energy effective theory obtained after integrating

out the 5D bulk; in section 3 we compute the one-loop contributions of the Higgs sector to

the S parameter in the effective theory and discuss the renormalization procedure. Finally,

in section 4 we discuss our results and conclude.

2. Electroweak symmetry breaking in AdS5

We consider a 5D model in a slice of AdS, with the gauge symmetry SU(2)L × SU(2)R ×
U(1)X , broken to the SM in the UV boundary. The 5D action is given by:

S =

∫

d4x

∫

dz
√

g

[

−1

4
La

MNLaMN − 1

4
Ra

MNRaMN − 1

4
XMNXMN

]

, (2.1)

where La
MN , Ra

MN and XMN are the SU(2)L, SU(2)R and U(1)X field strengths, and g is

the determinant of the metric.

The Higgs field transforms as (2,2)0 under the gauge symmetry,

H =
1√
2

(

v + h + iφ3 i(φ1 − iφ2)

i(φ1 + iφ2) v + h− iφ3

)

(2.2)

and it is localized near the IR brane by some suitable mechanism, such as in Gauge-Higgs

unification [9] or the condensation of a fourth-generation zero-mode fermion [10]. Here it

suffices to assume an effective localization on the IR boundary as given by

SIR =

∫

d4x

∫

dz δ(z − z1)
√

gIR

[

1

2
Tr|DµH|2 − V (H)

]

, (2.3)

with gIR the induced metric in the IR boundary and V (H) the usual renormalizable Higgs

potential. The covariant derivative acting on the scalar field is defined as:

DµH = ∂µH − ig5LµH + ig̃5HRµ , (2.4)

where g5 and g̃5 are the SU(2)L and SU(2)R 5D gauge couplings, respectively. As usual,

in order to obtain a canonically normalized Higgs kinetic term, we rescale the Higgs field

by H → (1/kz1)H.

2.1 The low energy effective theory

The presence of the 5D bulk affects the couplings of gauge bosons to the Higgs sector, as

well as to fermions. In order to compute the one loop contributions to electroweak precision

constraints, we will integrate out the 5D bulk and obtain a low energy theory containing

– 3 –



J
H
E
P
1
1
(
2
0
0
8
)
0
2
5

the zero-mode gauge bosons and the Higgs. We will use the holographic approach to obtain

the resulting low energy effective theory, separating the UV degrees of freedom. This is

useful since the UV boundary and the bulk respect different symmetries.

The Higgs VEV 〈H〉 = vI/
√

2 breaks the SU(2)L×SU(2)R symmetry down to SU(2)V .

Therefore it is convenient to work in the vector and axial-vector basis in the bulk, defined by

VM =
1

√

g2
5 + g̃2

5

(

g̃5LM + g̃5RM ) ,

AM =
1

√

g2
5 + g̃2

5

(

g5LM − g̃5RM ) . (2.5)

We add the gauge fixing term:

LV
GF = − 1

kz ξV
Tr [∂µVµ − z ξV ∂5(V5/z)]2 , (2.6)

where ∂5 is the derivative with respect to the z coordinate, and there will be similar

terms for AM and XM . We will take the limit ξV,A,X → ∞, and obtain ∂5(V5/(kz)) =

∂5(A5/(kz)) = ∂5(X5/(kz)) = 0. After integration by parts the quadratic term for Vµ in

the 5D Lagrangian is

L =
1

kz
Tr
{

Vµ

[

(∂2 − z∂5(1/z) ∂5)ηµν − ∂µ∂ν

]

Vν

}

+ . . . , (2.7)

and similarly for Aµ and Xµ.

Also left from the integration by parts are the following boundary terms:

Lbound =
1

kz
Tr [Vµ∂5Vµ−2Vµ∂µV5+Aµ∂5Aµ−2Aµ∂µA5+Xµ∂5Xµ−2Xµ∂µX5]

∣

∣

∣

z1

z0

. (2.8)

Since the IR-localized Higgs acquires a VEV, its kinetic term mixes Aµ with the Nambu-

Goldstone bosons (NGBs) φi (i=1,2,3). We then add an additional gauge fixing term on

the IR boundary

LA
GF,IR = − 1

ξA,IR
Tr

(

∂µAµ −
ξA,IR

2

√

(g2
5 + g̃2

5)k vσiφi

)2 ∣
∣

∣

z1

. (2.9)

We choose ξA,IR = 0. We then solve the bulk equations of motion obtained from (2.7),

with the following boundary conditions on the IR:

∂5Vµ|z1
= V5|z1

= ∂5Xµ|z1
= X5|z1

= 0 , (2.10)
(

1

kz
∂5 +

g2
5 + g̃2

5

4
v2

)

Aµ|z1
= A5|z1

= 0 . (2.11)

The solutions can be written as

Vµ(p, z) =
√

k V 0
µ (p) fV (p, z) , Aµ(p, z) =

√
k A0

µ(p) fA(p, z)

Xµ(p, z) =
√

k X0
µ(p) fV (p, z) , (2.12)
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with fV,A defined by:

fV (p, z) =
z(J1(pz)Y0(pz1)− Y1(pz)J0(pz1))

z0(J1(pz0)Y0(pz1)− Y1(pz0)J0(pz1))
, (2.13)

fA(p, z) =
z[J1(pz)(pY0(pz1)+m1Y1(pz1))−Y1(pz)(pJ0(pz1)+m1J1(pz1))]

z0[J1(pz0)(pY0(pz1)+m1Y1(pz1))−Y1(pz0)(pJ0(pz1)+m1J1(pz1))]
,(2.14)

where

m1 = (g2
5 + g̃2

5)kv2z1/4 , (2.15)

and where V 0
µ (p) = Vµ(p, z0)/

√
k is the UV-boundary value of the Vµ field, with analogous

definitions for the UV fields of Aµ and Xµ. In what follows we will drop the index 0, and

will refer to the UV fields simply as Vµ, Aµ and Xµ.

The low energy effective theory can then be written in terms of the UV fields and the

IR-localized Higgs. It is obtained by substituting the solutions for the UV fields back into

the action. The resulting low energy effective theory comes from the UV boundary terms,

and describes the interactions of the “elementary” fields coupled to the IR-localized Higgs.

These interactions encode the effects of the bulk that was integrated out. In order to have

the SM gauge field content at low energies, we choose the dynamical fields at low energy

to be the SU(2)L ×U(1)Y gauge fields

La
µ , a = 1, 2, 3 ; Bµ =

g5XR3
µ + g̃5Xµ

√

g̃2
5 + g2

5X

, (2.16)

with g5X the 5D U(1)X gauge coupling, whereas the other gauge fields in the UV

Ra
µ , a = 1, 2 ; Sµ =

g̃5R
3
µ − g5XXµ

√

g̃2
5 + g2

5X

, (2.17)

are given Dirilichet boundary conditions and are not present in the effective theory. We

define the 5D hypercharge coupling constant by:

g5Y =
g̃5g5X

√

g̃2
5 + g2

5X

. (2.18)

After integrating out the bulk gauge fields, the momentum-space quadratic terms in the

effective Lagrangian are

L2
eff =

Pµν

2

[

La
µΠL(p2)La

ν + 2L3
µΠ3B(p2)Bν + BµΠB(p2)Bν

]

−1

2
h(p2 + m2

h)h− 1

2
φip

2φi , (2.19)

where the correlators ΠL,Π3B and ΠB are given by

ΠL(p2) =
g̃2
5ΠV + g2

5ΠA

g2
5 + g̃2

5

, (2.20)
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Π3B(p2) =
g5g̃5g5X

(g2
5 + g̃2

5)
√

g̃2
5 + g2

5X

(ΠV −ΠA) , (2.21)

ΠB(p2) =
(g2

5g
2
5X + g2

5 g̃
2
5 + g̃4

5)ΠV + g̃2
5g

2
5XΠA

(g2
5 + g̃2

5)(g̃
2
5 + g2

5X)
, (2.22)

(2.23)

and ΠV,A(p2) are the vector and axial correlators, defined as

ΠV (p2) = − p[J0(pz0)Y0(pz1)− Y0(pz0)J0(pz1)]

z0[J1(pz0)Y0(pz1)− J0(pz1)Y1(pz0)]
, (2.24)

ΠA(p2) = − pJ0(pz0)[pY0(pz1) + m1Y1(pz1)]− pY0(pz0)[pJ0(pz1) + m1J1(pz1)]

z0J1(pz0)[pY0(pz1) + m1Y1(pz1)]− z0Y1(pz0)[pJ0(pz1) + m1J1(pz1)]
. (2.25)

The tree-level contribution to S = −16π/(gg′)Π′
3B(0), can already be obtained from the

momentum-dependent correlator in (2.21). Defining the 4D gauge couplings by

g2
5 ≃

1

k
log

z1

z0
g2, g2

5Y ≃
1

k
log

z1

z0
g′2 , (2.26)

where have discarded terms of order O(vz1)
2, one obtains

Stree = 4πv2z2
1

32 + 3(g2
5 + g2

5Y )v2z2
1

(8 + (g2
5 + g2

5Y )v2z2
1)2
≃ 2πv2z2

1 , (2.27)

where we have taken the limit vz1 ≪ 1 to obtain the last expression.

In the absence of new terms localized on the UV boundary, the propagators of the UV

fields are given by the inverse of the correlators. In the diagonal basis {γµ, Zµ} we have

γµ =
g̃5g5XL3

µ + g5

√

g̃2
5 + g2

5XBµ

[g2
5(g̃

2
5 + g2

5X) + g̃2
5g

2
5X ]1/2

, Zµ =
g5

√

g̃2
5 + g2

5XL3
µ − g̃5g5XBµ

[g2
5(g̃

2
5 + g2

5X) + g̃2
5g

2
5X ]1/2

, (2.28)

with correlators given by

Πγ = ΠV , ΠZ =
g̃4
5ΠV + (g̃2

5g2
5X + g2

5 g̃
2
5 + g2

5g
2
5X)ΠA

(g2
5 + g̃2

5)(g̃
2
5 + g2

5X)
. (2.29)

Finally, the spectrum of vector resonances, corresponding to the KK spectrum, is given by

the zeroes of Πγ(p2), ΠZ(p2) and ΠL(p2).

2.2 Gauge-Higgs interactions

In order to compute the one-loop corrections to the S parameter coming from the Higgs

sector, we need the interactions of the gauge bosons and the Higgs in the low energy

effective theory. The interactions of interest are the cubic interactions described by

L3
eff =

g

2
L1 µ(p)[cA(p)h

←→
∂µ φ1 + cV (p)φ3

←→
∂µφ2]

+
g

2
L3 µ(p)[cA(p)h

←→
∂µ φ3 + cV (p)φ2

←→
∂µφ1]

+
g′

2
Bµ(p)[−cA(p)h

←→
∂µ φ3 + c̃V (p)φ2

←→
∂µφ1] , (2.30)
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where cA(p), cV (p) and c̃V (p) have a non-trivial dependence with momentum and are

defined by

cV (p) =
2g̃2

5fV (p, z)+(g2
5−g̃2

5)fA(p, z)

(g2
5 + g̃2

5)

∣

∣

∣

z1

, c̃V (p)=
2g2

5fV (p, z)+(g̃2
5−g2

5)fA(p, z)

(g2
5 + g̃2

5)

∣

∣

∣

z1

,

cA(p) = fA(p, z)
∣

∣

∣

z1

. (2.31)

Taking the limit of z1 → z0 we recover the SM couplings, with cV = c̃V = cA = 1, but for

finite (z1 − z0) ∼ 1/TeV the gauge-Higgs couplings are modified with respect to their SM

values. In particular, the fact that cV (p)c̃V (p) 6= c2
A(p) in (2.31) will result in divergences

in the one loop calculation of the S parameter.

We will also need the quartic interactions given by

L4
eff =

g2

8
L1

µ(p)Lµ
1 (k)

{

[(2v + h)h + φ2
1]cA(p)cA(k) + (φ2

2 + φ2
3)cV (p)cV (k)

}

+
g2

8
L3

µ(p)Lµ
3 (k)

{

[(2v + h)h + φ2
3]cA(p)cA(k) + (φ2

1 + φ2
2)cV (p)cV (k)

}

+
g′2

8
Bµ(p)Bµ(k)

{

[(2v + h)h + φ2
3]cA(p)cA(k) + (φ2

1 + φ2
2)c̃V (p)c̃V (k)

}

+
gg′

4
Bµ(p)Lµ

1 (k)(v+h)φ2

(

g2
5cA(k)

g2
5 + g̃2

5

[cV (p)+c̃V (p)]+
g̃2
5cA(p)

g2
5+g̃2

5

[cV (k)+c̃V (k)]

)

+
gg′

4
Bµ(p)Lµ

3 (k)
{

− [(2v + h)h + φ2
3]cA(p)cA(k) + (φ2

1 + φ2
2)c̃V (p)cV (k)

}

, (2.32)

A few comments are in order. First, the fact that the gauge-Higgs couplings are modi-

fied due to the presence of the KK resonances is not particular of the specific symmetry

considered. For instance, had we consider instead SU(2)L × U(1)Y we would have also

obtained shifts in the couplings which are not the same for the different components of

the Higgs, and in particular we would still have cV (p)c̃V (p) 6= c2
A(p). Secondly, if we allow

for a Higgs bulk profile, fH(z), the couplings cV , c̃V and cA would depend on this profile.

However, since the Higgs must be quite localized near the IR brane, the approximation

made here (perfect IR localization) should capture the essence of the effects up to small

corrections. Also, the couplings in (2.31) entering in the cubic and quartic interactions

of (2.30) and (2.32) introduce an additional dependence on the external momentum.

Finally, the effective low energy theory is obtained by integrating the 5D bulk, i.e. it

is taking into account the effects of all the KK modes. It is also interesting to obtain the

effective couplings cV , c̃V and cA by integrating one or two KK modes and see how rapidly

the process converges. This can be seen in table 1, where we show the effective couplings

at zero momentum for the full 5D bulk integration, the case when only one KK mode

is integrated out and taken into account, and finally the results obtained with the first

two KK modes integrated out. These results are approximated (for instance, we assume

(M
(1)
KK)2 ≃ 6/z2

1 , and (M
(2)
KK)2 ≃ 30/z2

1), but already give a sense of the convergence of

the procedure. The effect of the KK modes comes essentially from the mixing of the

axial-vector combination with the zero-mode gauge bosons, triggered by the Higgs VEV.

We conclude that the KK picture is not a bad approximation and the first KK modes do

– 7 –
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Eff. Couplings Holography 1st KK 1st+ 2nd KKs

cV (0)
2g̃2

5
kv2z2

1
+8

(g̃2

5
+g2

5
)kv2z2

1
+8

2g̃2

5
kv2z2

1
+12

(g̃2

5
+g2

5
)kv2z2

1
+12

2g̃2

5
kv2z2

1
+10

(g̃2

5
+g2

5
)kv2z2

1
+10

cA(0) 8
(g̃2

5
+g2

5
)kv2z2

1
+8

12
(g̃2

5
+g2

5
)kv2z2

1
+12

10
(g̃2

5
+g2

5
)kv2z2

1
+10

Table 1: Effective couplings computed integrating out the 5D bulk, only the first KK resonance,

and only the first and second KK resonances. The remaining coupling is given by c̃2

V
= 2− c2

V
.

capture the correct physics in approximate magnitude and sign. However, and since it is

fairly straightforward to obtain the full 5D bulk integration of the holographic picture, we

will use the full result obtained in sections 2.1 and 2.2.

3. Higgs contributions to electroweak parameters

Since the couplings between the Higgs sector and the SM gauge bosons are modified by the

presence of the 5D bulk, we expect effects in the electroweak parameters with respect to

the SM. In the SM, the Higgs contributions to the S and T parameters are finite because

the potentially divergent terms cancel when we add the different diagrams. As we will

show, in the present model the Higgs contribution to S is cutoff sensitive. In the effective

theory described in the previous section, the shifts in the Higgs couplings to the SM gauge

bosons will result in additional contributions to T and S and in particular, in divergent

contributions to S. Due to the custodial symmetry, there is no tree-level contribution to

T , as can be seen from eq. (2.19), since Π11 = Π33 = ΠL at this order. In the appendix we

explicitly show that the one-loop contribution to T is finite, as expected also from the cus-

todial symmetry, as well as from the absence of a counter-term. In what follows we present

the calculation of the one loop Higgs contributions to S in the low energy effective theory.

3.1 Contribution to S in the effective theory

The one loop contributions of the Higgs sector to the S parameter are those depicted in

the Feynman diagrams of figure 1. The dots denote the effective couplings in eqs. (2.30)

and (2.32), obtained by integrating out the 5D bulk.

Although the contributions to one-loop self-energies coming from the gauge sector are

generically gauge dependent, the contributions from the diagrams in figure 1 to oblique

electroweak corrections are separately gauge-invariant. In general, the gauge dependence

of gauge-boson self-energies is cancelled by vertex and box diagrams which induce pinch

propagator-like contributions [15]. However, the pinch contributions that affect the dia-

grams of figure 1 are non-oblique [16], implying that the oblique pieces of these diagrams

are gauge invariant. Therefore, the contributions of the diagrams of figure 1 to oblique

electroweak parameters are separately gauge invariant.

Not all contributions from the diagrams in figure 1 should be considered as contribu-

tions to S. Some of them are renormalizing the Higgs VEV. In order to see how to identify

these pieces, it is instructive to first turn to the tree-level contribution to S, Stree, as shown

in (2.27). Since the Higgs is localized on the IR brane, the effects of EWSB must go
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BL3
BL3

(a) (b)

(c) (d)

BL3 BL3

3 2

1h

Figure 1: One-loop Feynman diagrams contributing to the S parameter involving the Higgs sector.

The large dots stand for the effective couplings of eqs. (2.30) and (2.32).

through the 5D bulk in order to be felt by the UV fields. In particular, the mixing between

B and L3 caused by the Higgs VEV in the IR brane, picks up a momentum dependence in

the bulk, resulting in kinetic mixing, and therefore in a contribution to S given by Stree.

The loop contributions in figure 1 are also IR-localized. External momentum dependence

arises from either external momentum in the loop, or the momentum dependent coefficients

cA(p), cV (p) and c̃V (p) appearing in the Higgs couplings to gauge bosons in the effective

theory. The latter, is the momentum dependence that the IR-localized loops acquire when

going from the IR brane to the UV, where the elementary gauge bosons are. These con-

tributions do not have external momentum dependence themselves in the IR, and they

correspond to various renormalizations, such as the renormalization of v appearing in Stree

in eq. (2.27). Thus, as a general rule, genuine contributions to the S parameter are those

with external momentum actually flowing through the loop. This amounts to computing

the loop diagrams with the effective couplings cA(p), cV (p) and c̃V (p) evaluated at zero

external momentum. This means, for instance, that the diagram 1-(d) will not contribute

to S, but that the momentum dependence from the couplings results in a renormalization

of v appearing in Stree.

The diagram 1-(c) gives a finite contribution to S. This can be seen by noticing that

the corresponding loop diagram gives

iΠ
1(c)
3B (p2) = −

(

g2 + g′2
)2

4
v2 cw sw c2

A(p)

∫

d4k

(2π)2
c2
A(p− k)Gh(k)GZ(p− k) , (3.1)
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corresponding to the gµν coefficient of the diagrams with L3 and B inside the loop, and

where cw and sw stand for the cosine and sine of the Weinberg angle respectively. In the

SM limit, cA → 1, these loop diagrams result in finite contributions to S since their deriva-

tives with respect to the external momentum are finite, even if the vacuum polarizations

themselves are divergent. In the present case, however, the factor cA(q − k) regulates the

vacuum polarization itself, since in the large momentum limit cA(k) ∼ e−kz1. As a con-

sequence, the contributions of figure 1-(c) to S are not only finite but further suppressed.

We just denote them as S1−(c) for the remainder of the paper.

The one loop contributions that do result in divergences in the S parameter are those

from diagrams 1-(a) and 1-(b). In the SM, these diagrams are responsible for the mh

dependence in S and are therefore the main source of bounds on mh from electroweak

precision bounds. Using dimensional regularization we obtain:

SH
loop =

1

12π
(Nǫ − 1)

[

cV (0)c̃V (0)− c2
A(0)

]

+
1

2π

∫ 1

0
dx(1− x)x

[

c2
A(0) ln

(

∆

µ2

)

− cV (0)c̃V (0) ln

(

M2
W

µ2

)]

+finite terms, (3.2)

where

Nǫ ≡
2

ǫ
− γ + 1 + ln 4π , (3.3)

∆ ≡ xm2
h + (1− x)M2

Z , (3.4)

ǫ = 4− d, µ is a renormalization scale, and the finite terms come from diagram 1-(c). The

first term in (3.2) is divergent in the low energy effective theory that results from integrat-

ing out the 5D bulk. The second term2 gives the mh dependence to the S parameter. The

SM limit corresponds to taking (cV , c̃V , cA)→ 1. From (3.2) we see that in this limit the di-

vergent term cancels, and the second term results in the Higgs contribution to S in the SM:

SH
SM = (1/12π) ln

(

m2
h/M2

W

)

+ · · · . (3.5)

Thus, the result of taking into account the effects of the 5D bulk (or of the strongly cou-

pled sector) is twofold: it makes the S parameter UV-sensitive and it modifies its mh

dependence.

If we regularize the momentum integrals using a cutoff procedure, the divergence

in (3.2) is logarithmic. In this case the contributions to S from the Higgs sector can

be written as

SH
loop =

1

12π

[

cV (0)c̃V (0) − c2
A(0)

]

ln
Λ2

µ2
+ finite terms , (3.6)

where Λ is the cutoff of the low energy effective theory. This should be the local IR cutoff,

which is warped down to the TeV scale 1/z1 from the Planck scale k. So we have

Λ ∼ 1

z1
. (3.7)

2In this gauge the NGBs are massless at this order, and the MZ and MW dependence in (3.2) comes

from other loops which are finite, such as the one in figure 1-(c).
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We conclude that the S parameter in AdS5 bulk theories is logarithmically divergent and

therefore cutoff dependent. In order to remove this divergence, the S parameter must be

renormalized by choosing a suitable renormalization condition.

3.2 Renormalization of the S parameter

The one loop calculation of the contributions to S from the Higgs sector fixes the divergent

part of the counter-term in the renormalization procedure. However, it does not fix the

finite parts, for which we need a renormalization condition. In order to illuminate the

discussion we write the S parameter as

S = Stree + δS + Sloop , (3.8)

where δS is a counter-term. In general, it can be written as

δS = δSdiv. + δSfinite (3.9)

where δSdiv. cancels the divergence in (3.2), and the finite part δSfinite is only determined

by the renormalization conditions. The resulting renormalized S parameter acquires a scale

dependence and can be written as

S(µ) = S(µ0) +
1

12π

[

cV (0)c̃V (0)− c2
A(0)

]

ln

(

µ2

µ2
0

)

, (3.10)

where µ0 is a reference scale and S(µ0) is

S(µ0) = Stree −
1

12π

[

cV (0)c̃V (0)− c2
A(0)

]

+ S1(c) + δSfinite

+
1

2π

∫ 1

0
dxx(1− x)

[

c2
A(0) ln

(

∆

µ2
0

)

− c̃V (0)cV (0) ln

(

M2
W

µ2
0

)]

, (3.11)

where ∆ is defined in (3.4). As mentioned earlier, the last term in (3.11) contains the Higgs

mass dependence of the S parameter.

In order to determine S(µ0) we must choose a renormalization condition, which basi-

cally fixes δSfinite. In principle, this could be arbitrarily chosen, for instance to match the

experimentally measured value of S at some energy scale, such as

S(µ0) = Sexp.(µ0 = MZ) . (3.12)

However, given that Sexp.(µ0 = MZ) . 0.1, the choice in (3.12) amounts to assume a

rather efficient cancellation of Stree against δSfinite as well as against the loop contributions.

Although this choice does not result in a numerically fine-tuned cancellation, it would imply

that the leading order contribution to S in the large N expansion,

Stree ≃
O(1)

π
N , (3.13)

is not a good enough approximation and that the next order in N is equally important.

In order to see this, we define the number of colors N in the 4D CFT in term of the 5D

gauge couplings by
1

N
=

(g2
5 + g̃2

5)

16π2
k , (3.14)
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which reflects that the large N corresponds to the perturbative expansion in the 5D gauge

theory. Thus, the loop diagrams considered here are suppressed contributions in the large

N expansion. This would mean that a renormalization condition such as (3.12) implies

that an O(N) contribution such as Stree is efficiently canceled by O(1) contributions coming

from loops, which may call into question our use of the large N expansion, i.e. our use of

perturbation theory in the 5D theory.

As concretes examples, we can study two different limits. First we consider m1z1 ≫ 1,

which corresponds to a heavy Higgs or nearly Higgsless scenario. Using (2.27), results in [7]

Stree ∼
3

4

N

π
. (3.15)

To obtain the one-loop contribution in this limit we need the zero-momentum limit of

cV , c̃V and cA, which results in

c̃V (0)cV (0) =
4
[

(1 + m1z1)g̃
2
5 + g2

5

] [

(1 + m1z1)g
2
5 + g̃2

5

]

(2 + m1z1)2 (g2
5 + g̃2

5)
2

(3.16)

c2
A(0) =

4

(2 + m1z1)2
, (3.17)

where m1 is defined in (2.15). Then, taking m1z1 ≫ 1 and using (3.14) we can see that

the loop contributions in (3.10) are of order O(1) in the large N expansion. We obtain

Sloop ∼
1

12π
ln

µ2

m2
h

. (3.18)

We can also consider the limit m1z1 ≪ 1, in which case we have

Stree ∼ 2πv2z2
1 , (3.19)

Sloop ∼
1

N

π

3
v2z2

1 ln
µ2

m2
h

. (3.20)

A more conservative renormalization condition would be

S(µ0) ∼ Stree , (3.21)

which amounts to assume that there is no significant cancellation of the tree-level contri-

bution from the counter-term or from loop corrections. With this choice, a large positive

S parameter is still predicted, but the prediction cannot be made precise.

Although the renormalization condition in (3.21) avoids large cancellations of O(N)

and O(1) contributions, the finite pieces of the counter-term could still affect significantly

the loop contributions. In particular, the last term in (3.11) containing the information

on the Higgs mass, can be affected by the renormalization condition since it is of O(1),

just as the counter-term is expected to be. We then conclude than in these theories the S

parameter cannot be used to put a bound on the Higgs mass.

The “correct” renormalization condition might be somewhere in between these two

extremes, i.e. there may be some cancellation of Stree dictated by the unknown UV (or
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CFT) physics. In any case, what is clear from our calculation is that the composite,

strongly-coupled Higgs sector suffers shifts in its couplings to the SM gauge fields in such

a way that the usual cancellations in the diagrams of figure 1-(a) and figure 1-(b) do not

occur. Thus, this misalignment of the gauge-Higgs couplings with respect to their SM

values, results in a dependence on the cutoff scale (in the 5D language), or the matching

scale with the 4D CFT (in the 4D picture).

4. Discussion and conclusions

We have computed the one-loop contributions to the S parameter from the Higgs sector

in bulk AdS5 theories of EWSB. In these generic 5D setups we have used the minimal

extension of the gauge group that protects isospin symmetry in the bulk, avoiding a tree-

level T parameter. Our results show that the S parameter is UV-sensitive and therefore

it must be renormalized. The appearance of divergences in S are a consequence of the

misalignment between the gauge fields in the IR, where they interact with the IR-localized

Higgs, and the UV fields which constitute the elementary degrees of freedom in terms of

the holographic picture. This misalignment is produced by the 5D bulk between the IR and

the UV branes, or the strong dynamics from the 4D CFT, and it occurs independently of

the choice of bulk gauge symmetry. These divergences are then completely generic in bulk

AdS5 models of electroweak symmetry breaking. Their origin is fundamentally different

from the logarithmic divergence found in ref. [17], which has origin in the mixing of the

Higgs with a state resulting from the symmetry breaking pattern in that model. On the

other hand, they are similar in spirit to the matching-scale dependence found in refs. [18]

and [19] in a three-site Higgsless model.

It is also possible to understand the occurrence of these divergences in a generic oper-

ator analysis. For instance, the operator

OH = (H†H) |DµH|2 (4.1)

contributes to S when inserted in one-loop diagrams. Its contribution is logarithmically

divergent and results in

SOH
∼ −cH v2

12π
ln

(

Λ2

m2
h

)

, (4.2)

where cH is the corresponding coefficient ofOH . On the other hand, we can do the matching

of this operator to the AdS5 bulk theory. Expanding ΠL in eq. (2.19) to fourth order in v

at zero momentum, we obtain that

cH = −g2
5 + g̃2

5

4
k z2

1 , (4.3)

which results in a prediction consistent with (3.6). Thus, we see that the divergence in S

is a generic feature in strongly coupled theories, rather than specific to AdS5 bulk models.

Coming back to the AdS5 bulk models discussed in the paper, the renormalized S

parameter has a calculable scale dependence given in (3.10). We discussed the possible

choices of renormalization conditions. Although in principle it is possible to choose an
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arbitrary condition, so as to adjust the renormalized value of S to any desired value, we

showed that asking for a significant cancellation of the tree-level value Stree, which is of

O(N) in the large N expansion, might be unnatural if the expansion is to be trusted.

However, and by the same argument, the Higgs mass dependence in S, which appears

in (3.11), is of O(1) and therefore can be naturally affected by a renormalization procedure

triggered by O(1) one-loop corrections. We then conclude than in these theories there is

no bound on the Higgs mass that can be extracted from S.

We only computed the one-loop contributions from the Higgs sector. However, we also

expect divergent contributions from fermions and gauge bosons. As we have shown, the

divergences can be associated with the shifts in the couplings between the SM gauge fields

localized in the UV and the composite fields localized towards the IR. Thus, we expect a

similar effect for composite fermions. These are more model-dependent and we leave their

study for future work.

We finally comment on the case where the light fermions are de-localized. The limit

of exact de-localization, results in flat zero modes. In this limit [6, 14] there is no tree level

S and we do not expect divergences in the loop contributions. In this case, since the SM

fermions exactly correspond to the zero modes, the SM gauge fields are also de-localized

and their couplings with the Higgs and fermions are canonical.

A. Higgs sector contribution to T

Here we compute the one-loop contributions to the T parameter coming from the Higgs

sector. The relevant diagrams are shown in figure 2. The contributions to T ∝ Π11(0) −
Π33(0) are similar to the case of the SM, but changing the usual interactions by those of

eqs. (2.30)–(2.32). The effective couplings cV (p), c̃V (p) and cA(p) associated to the external

legs are evaluated at zero momentum. Notice that the NGBs φi are degenerate at tree

level. From eq. (2.30) we can see that the one-loop contributions to T from the Feynman

diagrams 2-(a) and 2-(b) exactly cancel. We compute now the diagram in figure 1-(c). In

order to see explicitly that this contribution is finite, we work in the diagonal basis {γ, Z}.
There are two diagrams contributing to Π11, one with a Higgs field h and another with a

NGB field φ2 propagating in the loop. This gives:

iΠ11(0) =
g4 v2

16
c2
A(0)

∫

d4k

(2π)4
c2
A(k)GhGL

+
g2g′2v2

16

∫

d4k

(2π)4

[

g2
5cA(0) (cV (k) + c̃V (k)) + g̃2

5cA(k))
]2

(

g2
5 + g̃2

5

)2 (A.1)

×Gφ2
(c2

wGγ + s2
wGZ) ,

where Gh,φi
are the propagators of the Higgs and the NGBs and we have factorized the

gauge propagators as GA
µν = PµνGA. On the other hand, the contribution to Π33 is given by:

iΠ33(0) =
g4 v2

16
c2
A(0)

∫

d4k

(2π)4
c2
A(k)GhGL

+
g2g′2 v2

4
c2
A(0)

∫

d4k

(2π)4
c2
A(k)Gh

[

s2
wGZ + c2

wGγ

]

. (A.2)
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(a) (b)

Li Li

3, 2

h , 1h, 2

1 , 3

L3 3LL1 1L

h, 2

(c)

Li,B

Figure 2: Relevant one-loop diagrams contributing to the T parameter involving the Higgs sector.

Here Li = L1, L3.

We can see that in the one-loop contributions to the T parameter, proportional to Π11(0)−
Π33(0), the first terms in (A.1) and (A.2) cancel. Also, and just as in the case of the discus-

sion of S1−(c) in section 3.1, the vacuum polarizations are finite. This is because fV,A(k, z1)

are exponentially suppressed at large momentum, ∼ e−kz1, implying that also cV (k), c̃V (k)

and cA(k) are. The exponential suppression is due to the Higgs localization in the IR

boundary. Had we considered a Higgs with a profile in the bulk, we would have obtained

a power suppression. All the gauge propagators can be approximated at large momentum,

kz1 ≫ 1, by 1/(k2 log k). Therefore the integrands of eqs. (A.1) and (A.2) are exponentially

suppressed for large momentum and the contribution to T from the Feynman diagram 1-(c)

is finite.

There are also contributions with only gauge fields running in the loops. Since the

difference between the vector and axial correlators is exponentially suppressed at large

momentum, these contributions to T are also finite.
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